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7. Stieltjes’ transform of a probability measure

Definition 31. For µ ∈ P (R), its Stieltjes’ transform is defined as Gµ(z) =
R

R
1

z−x µ(dx). It
is well-defined on C\support(µ), in particular for z ∈ H. If X ∼ µ, we can write Gµ(z) =
E

[ 1
z−X

]
.

Some simple observations on Stieltjes’ transforms.

(a) For any µ ∈ P (R), |Gµ(z)|≤ 1
Imz for z ∈H.

(b) Gµ is analytic in C\support(µ), as can be seen by integrating over any contour (that
does not enclose the support) and interchanging integrals (integrating 1/(z− x) gives
zero by Cauchy’s theorem).

(c) Suppose µ is supported on a compact interval [−a,a]. Then, its moments mk :=R
xkµ(dx) satisfy |mk| ≤ ak and hence ∑mkz−k−1 converges for |z| > a and uniformly

for |z|≥ a+δ for any δ > 0. Hence,

(9)
∞

∑
k=0

mk

zk+1 = E

[
∞

∑
k=0

Xk

zk

]
= E

[
1

z−X

]
= Gµ(z)

where the first equality follows by DCT. One can legitimately define Gµ(∞) = 0 and
then (9) just gives the power series expansion of w → Gµ(1/w) around 0. Since the
power series coefficients are determined by the analytic function in any neighbourhood
of 0, we see that if Gµ(z) = Gν(z) for all z in some open subset of H, then µ = ν.

(d) For compactly supported mu, Gµ(z)∼ 1
z as z→ ∞. If µ is not cmpactly supported, the

same is true for z = iy as y ↑ ∞.

Equation (??) also shows that the Stieltjes transform is some variant of the moment gen-
erating function or the Fourier transform. Its usefulness in random matrix theory is analo-
gous to the use of characteristic functions in proving central limit theorems. The following
lemma gives analogues of Fourier inversion and Lévy’s continuity theorems.

Lemma 32. Let µ,ν be probability measures on R.

(1) For any a < b

lim
y↓0

Z b

a
−1

π
Im{Gµ(x+ iy)}dx = µ(a,b)+

1
2

µ{a}+
1
2

µ{b}.

(2) If Gµ(z) = Gν(z) for all z in an open subset of H, then µ = ν.
(3) If µn → µ, then Gµn → Gµ pointwise on H.
(4) If Gµn →G pointwise on H for some G : H→C, then G is the Stieltjes’ transform

of a possibly defective measure. If further, iyG(iy)→ 1 as y ↑ ∞, then, G = Gµ
for a probability measure µ and µn → µ.

Exercise 33. If µ has a continuous density f , then show that f (x) =− 1
π limy↓0 y Im{Gµ(x+

iy)}.

PROOF. (1) Observe that

−1
π

ImGµ(x+ iy) =
−1
π

Z

R
Im

{
1

x+ iy− t

}
µ(dt) =

Z

R

1
π

y
(x− t)2 + y2 µ(dt).

The last quantity is the density of µ!Cy, where Cy is the Cauchy distribution with
scale parameter y.
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On some probability space, let X and Z be independent random variables
such that X ∼ µ and Z ∼C1. Then by the above observation, we get

Z b

a
−1

π
Im{Gµ(x+ iy)}dx = P(X + yZ ∈ [a,b]) = E

[
1X+yZ∈[a,b]

]
.

Observe that 1X+yZ∈[a,b] → 1X∈(a,b) +1X=a,Z>0 +1X=b,Z<0 as y ↓ 0. Take expec-
tations, apply DCT, and use independence of X and Z to get µ(a,b)+ 1

2 µ{a}+
1
2 µ{b}.

(2) Follows immediately from the first part.
(3) If µn → µ, then

R
f dµn →

R
f dµ for all bounded continuous functions f . For

fixed z ∈ H, the function x → 1
z−x is bounded and continuous on R and hence

Gµn(z)→ Gµ(z).
(4) Conversely suppose that Gµn → G pointwise for some function G. By Helly’s

selection principle, some subsequence µnk converges vaguely to a possibly de-
fective measure µ. As (z−x)−1 is continuous and vanishes at infinity, Gµnk

(z)→
Gµ(z) for all z ∈H.

Hence Gµ = G which shows that all subsequential limits have the same
Stieltjes transform G. Further iyG(iy) → 1 which shows that µ is a probabil-
ity measure. By uniqueness of Stieltjes transforms, all subsequential limits are
the same and hence µn → µ. !

Our next lemma gives a sharper version of the uniqueness theorem, by getting a bound
on the Lévy distance between two probability measures in terms of the difference between
their Stieltjes transforms.

8. Bounding Lévy distance in terms of Stieltjes transform

The following lemma is a quantitative statement that implies parts (2) and (4) of
Lemma 32 as easy corollaries (how do you get part (4) of Lemma 32?).

Lemma 34. Let µ,ν ∈ P (R). Then, for any y > 0 and δ > 0 we have

D(µ,ν)≤ 2
π

δ−1y+
1
π

Z

R
| ImGµ(x+ iy)− ImGν(x+ iy)|dx.

PROOF. Let µy = µ !Cy and νy = ν !Cy. We bound the Lévy distance between µ and
ν in three stages.

D(µ,ν)≤D(µy,µ)+D(νy,ν)+D(µy,νy).
By the proof of Lemma 32 we know that µy has density −π−1 ImGµ(x + iy) and similary
for νy. Hence, by exercise 35

(10) D(µy,νy)≤
1
π

Z

R
| ImGµ(x+ iy)− ImGν(x+ iy)|dx.

Next we control D(µy,µ). Let X ∼ µ and Z∼C1 so that V = X +yZ∼ µy. For t > 0 observe
that P(Z > t) =

R ∞
t π−1(1 + u2)−1du ≤

R ∞
t π−1u−2du = π−1t−1. Thus, for any δ > 0, we

get

P(X ≤ t, V > t +δ)≤ P
(
Z > y−1δ

)
≤ π−1δ−1y

P(V ≤ t, X > t +δ)≤ P
(
Z <−y−1δ

)
≤ π−1δ−1y.

These immediately give D(µ,µy) ≤ π−1δ−1y. Similarly D(ν,νy) ≤ π−1δ−1y. Combine
with (10) to get the inequality in the statement. !
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Exercise 35. Let µ and ν have densities f and g respectively. Then show that D(µ,ν) ≤R
| f −g| (the latter is called the total variation distance between µ and ν).

9. Heuristic idea of the Stieltjes’ transform proof of WSL for GOE

Let Xn be a GOE matrix. Let An = 1√
n Xn have eigenvalues λk and ESD Ln. The

Stieltjes’ transform of Ln is

Gn(z) :=
Z 1

z− x
Ln(dx) =

1
n

n

∑
k=1

1
z−λk

=
1
n

tr(zI−Xn)−1.

We show that Ln → µs.c by showing that Gn(z)→Gs.c(z) for all z ∈H. By Lemma ??, this
proves the claim. We are being a little vague about the mode of convergence but that will
come in a moment.6

We introduce the following notations. We fix n for now. Yk will denote the matrix
obtained from X by deleting the kth row and the kth column. And uk ∈ Cn−1 will denote
the column vector got by deleting the kth entry in the kth column of X .

From the formulas for the entries of the inverse matrix, we know that for any M,

(zI−A)k,k =
1

z− 1√
n Xk,k− 1

n u∗k(zI− 1√
nYk)−1uk

and hence letting Vk denote the denominator on the right side, we can write

(11) Gn(z) =
1
n

n

∑
k=1

1
Vk

.

The key observations are
(1) Yk is just an (n−1)-dimensional GOE matrix.
(2) uk is a standard Gaussian vector in (n−1)-dimensions.
(3) Yk and uk are independent.

Therefore,

E[V1] = z− 1
n

E
[

E
[

u∗1(zI−Y1)−1u1
∣∣ 1√

n
Y1

]]

= z− 1
n

E
[

tr(zI− 1√
n

Y1)−1
]

≈ z−E[Gn−1(z)].(12)

provided we ignore the difference between n and n− 1. As Vk are identically distributed,
E[Vk] is equal to the same quantity.

Let us assume that each Vk is very close to its expectation. This will be a consequence
of high dimensionality and needs justification. Then return to (11) and write

Gn(z)≈
1
n

n

∑
k=1

1
E[Vk]

=
1

z− n−1
n E[Gn−1(z)]

.

6The method of Stieltjes’ transform for the study of ESDs, as well as the idea for getting a recursive equation
for Gn is originally due to the physicist Leonid Pastur ?. The method was pioneered in many papers by Zhidong
Bai.
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There are two implications in this. Firstly, the random quantity on the left is close to the
non-random quantity on the right, and hence if we assume that E[Gn(·)] converges to some
G(·), then so that Gn(·), and to the same limit. Secondly, for G we get the equation

G(z) =
1

z−G(z)
.

This reduces to the quadratic equation G(z)2− zG(z)+ 1 = 0 with solutions G(z) = (z±√
z2−4)/2. By virtue of being Stieltjes’ transforms, Gn(z) ∼ z−1 as z → ∞ and G must

inherit this property. Thus we are forced to take G(z) = (z−
√

z2−4)/2 where the appro-
priate square root is to be chosen. By direct calculation, the Stieltjes transform of µs.c is
identified to be the same. This completes the heuristic.

Exercise 36. Show that G = Gµs.c satisfies the equation (G(z))2− zG(z) + 1 = 0 for all
z ∈H. Argue that no other Stieltjes’ transform satisfies this equation. One can then write

G(z) =
z−
√

z2−4
2

where the branch of square root used is the one defined by
√

reiθ =
√

reiθ/2 with θ ∈
(−π,π). Expand by Binomial theorem and verify that the even moments are given by
Catalan numbers.

10. The Stieltjes’ transform proof of WSL

Now for the rigorous proof. The crucial point in the heuristic that needs justification
is that Vk is close to its expected value. The following two lemmas will come in handy.

Lemma 37. Let V be a complex valued random variable and assume that almost surely,
ImV ≥ t for some constant t > 0. Then, for any p > 0

E
[∣∣ 1

V
− 1

E V
∣∣p

]
≤ t−2pE [|V −E V |p] .

PROOF. Almost surely, ImV ≥ t and hence Im{E V} ≥ t too. Hence, |V | ≥ t a.s., and
|E V | ≥ t. Thus,

∣∣ 1
V
− 1

E V
∣∣ =

|V −E V |
|V | |E V | ≤ t−2|V −E V |.

Raise to power p and take expectations. !
Lemma 38. Let u be an n× 1 random vector where ui are independent real or complex
valued random variables with zero mean and unit variance. Let M be a non-random n×n
complex matrix. Then,
(a) E [u∗Mu] = trM.
(b) If in addition m4 := E[|ui|4] < ∞, then Var(u∗Mu)≤ (2+m4)tr(M∗M).

PROOF. Write u∗Mu = ∑n
i, j=1 Mi, juiu j. When we take expectations, terms with i *= j

vanish and those with i = j give Mi,i. The first claim follows. To find the variance,7 we
compute the second moment E

[
|u∗Mu|2

]
= ∑i, j ∑k,! Mi, jMk,!E[uiu juku!].

E[uiu juku!] vanishes unless each index appears at least twice. Thus, letting m2 = E[u2
1]

E[uiu juku!] = δi, jδk,! +δi,!δ j,k + |m2|2δi,kδ j,! +m4δi, j,k,!.

7For a complex-valued random variable Z, by Var(Z) we mean E[|Z−E[Z]|2] = E[|Z|2]−|E[Z]|2. This is
consistent with the usual definition if Z is real-valued.
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Thus

E
[
|u∗Mu|2

]
= ∑

i,k
Mi,iMk,k +∑

i, j
Mi, jM j,i + |m2|2 ∑

i, j
Mi, jMi, j +m4 ∑

i
Mi,iMi,i

= (trM)2 + tr(M∗Mt)+ |m2|2tr(M∗M)+m4 ∑
i
|Mi,i|2

≤ (trM)2 +(1+ |m2|2 +m4)tr(M∗M).

Observe that |m2|2 ≤ E[|u1|2] ≤ 1 where equality may not hold as u1 is allowed to be
complex valued. Subtract E[u∗Mu]2 = (trM)2 to get Var(u∗Mu)≤ (2+m4)tr(M∗M). !

Now we are ready to prove Wigner’s semicircle law under fourth moment assumption.

Theorem 39. Let Xn be a Wigner matrix. Assume m4 = max{E[|X1,2|4],E[X4
1,1]} is finite.

Then, Ln
P→ µs.c and Ln → µs.c.

PROOF. Let Gn and Gn denote the Stieltjes’ transforms of Ln and Ln respectively. Of
course, Gn(z) = E[Gn(z)]. Fix z ∈H. From (11) we have Gn(z) = n−1 ∑n

k=1 1/Vk where

(13) Vk = (zI−X)k,k = z−
Xk,k√

n
− 1

n
u∗k

(
zI− Yk√

n

)−1
uk.

Here Yk is the (n− 1)× (n− 1) matrix obtained from X by deleting the kth row and kth

column, and uk is the (n− 1)× 1 vector obtained by deleting the kth element of the kth
column of X . Clearly Yk is a Wigner matrix of dimension (n−1) and uk is a vector of iid
copies of X1,2, and uk is independent of Yk. We rewrite (13) as

(14) Vk = z−
Xk,k√

n
− 1√

n(n−1)
u∗k

(
znI− Yk√

n−1

)−1
uk, where zn :=

√
n√

n−1
z.

Hence,

E
[∣∣Gn(z)−

1
E[V1]

∣∣2
]

= E

[
∣∣ 1

n

n

∑
k=1

(
1

Vk
− 1

E[Vk]

) ∣∣2
]

≤ E

[
1
n

n

∑
k=1

| 1
Vk
− 1

E[Vk]
∣∣2

]
(by Cauchy-Schwarz)

≤ 1
(Imz)4 E[|V1−E[V1]|2] by Lemma 38.

For a complex-valued random variable with finite second moment, E[|Z−c|2] is minimized
uniquely at c = E[Z]. In particular we also have |E[Z]|2 ≤ E[|Z|2]. Therefore, the above
inequality implies the following two inequalities.

Var(Gn(z))≤
1

(Imz)4 E[|V1−E[V1]|2](15)

∣∣Gn(z)−
1

E[V1]
∣∣2 ≤ 1

(Imz)4 E[|V1−E[V1]|2].(16)
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The next step is to compute E[V1] and obtain a bound for Var(V1). Firstly,

E[V1] = z−0− 1√
n(n−1)

E

[
E

[
u∗k

(
znI− Y1√

n−1

)−1
uk

∣∣Y1

]]

= z−
√

n−1√
n

1
n−1

E

[
tr

(
znI− Y1√

n−1

)−1
]

= z−
√

n−1
n

Gn−1(zn).(17)

Now, to estimate Var(V1), recall that X1,1, u1 and Y1 are all independent. Write A =
(zI − Y1√

n )−1 and B = (znI − Y1√
n−1 )−1 and observe that if θ j are eigenvalues of Y1 then

the eigenvalues of A and B are (z− θ j/
√

n)−1 and (z− θ j/
√

n−1)−1 both of which are
bounded in absolute value by (Imz)−1.

Write Var(V1) as E
[
Var(V1

∣∣Y1)
]
+Var

(
E[V1

∣∣Y1]
)
. We evaluate the two individually

as follows. Using the expression (13) and part (b) of Lemma 38 for Var(V1
∣∣Y1) we get

E
[
Var(V1

∣∣Y1)
]
= E

[
n−1 +n−2(2+m4)tr(A∗A)

]
≤ n−1 +m4n−1(Imz)−2.

Using the expression (14) we get E[V1
∣∣Y1] = z−

√
n−1

n Gn−1(zn) and hence

Var
(
E[V1

∣∣Y1]
)

=
n−1

n
Var(Gn−1(zn))≤ Var(Gn−1(zn)) .

Add this to the inequality for E
[
Var(V1

∣∣Y1)
]

gives a bound for Var(V1) which when in-
serted into (15) gives

Var(Gn(z))≤
1

(Imz)4

(
1
n

+
m4

n(Imz)2 +Var(Gn−1(zn))
)

.

Let Vn := sup{Var(Gn(z)) : Imz ≥ 2}. Observe that Vn ≤ 2−2 as |Gn(z)| ≤ (Imz)−1, in
particular Vn is finite. Since Imzn > Imz, we arrive at the recursive inequality

Vn ≤
1

24n
+

m4

26n
+

1
24 Vn−1 ≤

A
n

+
1
2

Vn−1

where A = 2−2 + 2−6m4. We increased the first term from 24 to 2−2 so that V1 ≤ A also.
Iterating this inequality gives

Vn ≤ A
n

+
A

2(n−1)
+

A
22(n−2)

+ . . .+
A

2n−22
+

A
2n−1

≤ A
n/2

n/2−1

∑
k=0

1
2k +

A
2n/2

n
2

≤ 5A
n

(for n≥ 10).

Insert this into (15) and (16) and use (17) to get

sup
Imz≥2

Var(Gn(z))≤
1
n

(18)

sup
Imz≥2

∣∣Gn(z)−
1

z−
√

(n−1)/n Gn−1(zn)

∣∣2 ≤ 1
n
.(19)

Convergence of Ln to semicircle: Ln is a sequence of probability measure with Stieltjes
transforms Gn. Let µ be any subsequential limit of Ln, a priori allowed to be a defective



24 2. WIGNER’S SEMICIRCLE LAW

measure. By (19) Gµ must satisfy Gµ(z)(z−Gµ(z)) = 1 for all z with Imz ≥ 2 (why?
Justification is needed to claim that Gn−1(zn) → Gµ(z), but one can argue this by using
equicontinuity of Gn as in the next paragraph). Thus, Gµ(z) = (z±

√
z2−4)/2. Since Gµ

must be analytic in z and Gµ(z) ∼ µ(R)z−1 as z → ∞, the branch of square root is easily
fixed. We get

Gµ(z) =
z+
√

z2−4
2

, for Imz≥ 2

where the square root is the branch
√

reiθ =
√

reiθ/2 with θ ∈ (−π,π). By exercise 36
this is precisely the Stieltjes transform of the semicircle distribution on [−2,2]. Thus all
subsequential limits of Ln are the same and we conclude that Ln → µs.c.

Convergence of Ln to semicircle: Without loss of generality, let Xn be defined on the same
probability space for all n.8 If ∑1/nk < ∞, then by (18) it follows that for fixed z with
Imz ≥ 2 we have Gnk(z)−Gnk(z)

a.s.→ 0. Take intersection over a countable dense subset
S of z and invoke the convergence of Gn to conclude that Gnk(z)→ Gs.c(z) for all z ∈ S,
almost surely. For a Stieltjes transform G, we have the inequality |G′(z)| ≤ (Imz)−2, from
which we see that Gn are equicontinuous on {Imz≥ 2}. Therefore we get Gnk(z)→ G(z)
for all z with Imz≥ 2, almost surely. Hence Lnk

a.s.→ µs.c.
Now, given any subsequence {nk}, choose a further subsequence {nk!} such that

∑1/nk! < ∞. Then Lnk!

a.s.→ µs.c. Thus every subsequence has an almost sure convergent

sub-sub-sequence. Therefore Ln
P→ µ. !

Remark 40. If we had used Lemma 37 with p = 4 instead of p = 2 (which would force
the assumption that Xi, j have finite eighth moment), then we could get n−2 as a bound for
E

[∣∣Gn(z)− 1
E[V1]

∣∣2
]
. Therefore we would get almost sure convergence.

In fact, one can conclude almost sure convergence assuming only finite second mo-
ment! This requires us to use p = 1, but then we are faced with estimating E[|V1−E[V1]|]
which is more complicated than estimating the variance. Lastly, Stieltjes’ transform meth-
ods are very powerful, and can be used to prove rates of convergence in Wigner’s semicircle
law.

Exercise 41. Prove Theorem 24 by Stieltjes transform methods. Mainly, work out the
heuristic steps in the proof and arrive at an equation for the Stieltjes transform of the
limiting measure and show that the equation is satisfied uniquely by the Stieltjes transform
of the Marcenko-Pastur law. The full details will involve similar technicalities and may be
omitted.

8The strategy used here is as follows. To show that real-valued random variables Yn converge in probability
to zero, we may first of all construct random variables Zn on the same probability space so that Zn

d= Yn and then
show that Zn converge in probability to zero. And for the latter, it suffices to show that any subsequence has a
further subsequence that converges almost surely to zero.


